A uniqueness theorem and the Myrberg phenomenon

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Uniqueness Theorem and the Myrberg Phenomenon for a Zalcman Domain

Let R = ∆0 \ ∪n∆n be a Zalcman domain (or L-domain), where ∆0 : 0 < |z| < 1, ∆n : |z − cn| ≤ rn, cn ↘ 0, ∆n ⊂ ∆0 and ∆n ∩ ∆m = φ (n ̸= m). For an unlimited two-sheeted covering φ : ∆̃0 → ∆0 with the branch points {φ(cn)}, set R̃ = φ−1(R). In the case cn = 2−n, it was proved that if a uniqueness theorem is valid for H∞(R) at z = 0, then the Myrberg phenomenon H∞(R) ◦ φ = H∞(R̃) occurs. One might sus...

متن کامل

A Uniqueness Theorem of the Solution of an Inverse Spectral Problem

This paper is devoted to the proof of the unique solvability ofthe inverse problems for second-order differential operators withregular singularities. It is shown that the potential functioncan be determined from spectral data, also we prove a uniquenesstheorem in the inverse problem.

متن کامل

The uniqueness theorem for inverse nodal problems with a chemical potential

In this paper, an inverse nodal problem for a second-order differential equation having a chemical potential on a finite interval is investigated. First, we estimate the nodal points and nodal lengths of differential operator. Then, we show that the potential can be uniquely determined by a dense set of nodes of the eigenfunctions.

متن کامل

A Uniqueness Theorem for Clustering

Despite the widespread use of Clustering, there is distressingly little general theory of clustering available. Questions like “What distinguishes a clustering of data from other data partitioning?”, “Are there any principles governing all clustering paradigms?”, “How should a user choose an appropriate clustering algorithm for a particular task?”, etc. are almost completely unanswered by the e...

متن کامل

A uniqueness theorem for the AdS soliton

The stability of physical systems depends on the existence of a state of least energy, or ground state. In gravity, this is guaranteed by the positive energy theorem. The proof employs spinor structure and can fail for certain spacetime topologies, such as those arising in non-supersymmetric Kaluza-Klein compactifications, which can decay to arbitrarily negative energy. The proof also fails for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal d'Analyse Mathématique

سال: 1998

ISSN: 0021-7670,1565-8538

DOI: 10.1007/bf02786932